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The triflic acid (CF3SO3H) promoted cyclizations of 2-styrylbiaryls are found to be useful for the synthesis
of polycyclic aromatic compounds, including functionalized derivatives of polycyclic aromatic com-
pounds and heterocyclic systems. The reaction involves cationic cyclization followed by an elimination
of benzene from the intermediate product.
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Polycyclic aromatic hydrocarbons and related compounds have
been of great interest due to their relationships to chemical carci-
nogenesis.1 Besides their biological activities, these substances
have likewise been considered important components in material
science applications. Due to their extended p-systems, they can ex-
hibit novel optical properties.2 Consequently, there is the contin-
ued need for new synthetic routes leading to these types of
compounds and their functionalized derivatives.3 We recently de-
scribed a new superacid-promoted route to aza-polycyclic aro-
matic compounds (Eq. 1).4,5 This chemistry involves the
formation of superelectrophilic intermediates (i.e., 1), followed
by cyclization and elimination of benzene to give the condensed
aromatic compounds (i.e., 2). Because the precursor substrate pos-
sesses an N-heterocyclic ring that is fully protonated in acid, the
cyclizations occur via the dicationic, superelectrophilic intermedi-
ates such as 1. These results raised an interesting question: is it
possible to achieve similar condensation reactions through mono-
cationic reactions (without N-heterocyclic rings) to prepare poly-
cyclic aromatic hydrocarbons? In the following Letter, we
address this question and describe a new superacid-promoted syn-
thetic route to polycyclic aromatic hydrocarbons, substituted
derivatives, and heterocyclic systems.
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In our initial investigation of this reaction, 2-styrylbiphenyl (2)
was prepared and reacted with superacidic CF3SO3H.6 This sub-
strate (along with other olefins used in this study) was synthesized
using Suzuki and Wittig coupling reactions (Eq. 2).4 When com-
pound 2 is reacted in superacid, the product mixture is complex,
but some phenanthrene (3, ca. 5–10% yield) is detected by GCMS
(Eq. 3). Other major products from the reaction include 9,10-dihy-
dro-9-phenylphenanthrene (4) and 9-benzyl-9H-fluorene (5). With
the formation of product 5, it is clear that both possible carbocat-
ionic intermediates (7a,b) are generated in the acid. The phenan-
threne (3) is formed by ipso-protonation of the phenyl group of
compound 4 and elimination of benzene. Other minor products
(ca. 5% yield) include biphenyl and dibenz[a,c]anthracene (6).
Although it is not exactly clear how these products are formed,
the presence of compound 6 suggests some type of dimerization
and cleavage reaction steps. Compound 2 was also reacted in the
gas-phase by flash vacuum pyrolysis (200 �C, 10�2 Torr) over the
solid acid Nafion-H. Overall a similar product mixture was ob-
served; however, the dibenz[a,c]anthracene (6) was not formed.
Since intermolecular reactions are less likely in the gas-phase, this
supports the idea that an intermolecular reaction gives compound
6 in the condensed phase.
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Table 1
Cyclizations of styryl-substituted precursors 8–14 to the condensed products 15–22
in CF3SO3H
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(%)

1

Ph 8 15

52a

2

Ph9

OCH3

16

OCH3

71a

3

Ph
10

O

O

17

O

O

18

OO

41% 34
a

4

O2N

Ph11

O2N

19

81a

5

O2N

Ph12

O2N

20

78b

6

S

Ph
13

S

21

42c

7 O

Ph

14

O

22

12a

a Reaction done at 25 �C.
b Reaction done at 0 �C.
c Reaction done at 65 �C.
d Isolated yields of pure products. Products were characterized by 1H and 13C

NMR and by high resolution and low resolution mass spectra.
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The formation of some phenanthrene (3) from 2-styrylbiphenyl
(2) was a promising initial result, so a number of styryl-substituted
arenes were prepared and reacted with CF3SO3H (Table 1). Sub-
strate 8 gives naphtho[1,2-a]pyrene (15) as the major product in
fair yield. This system (8) differs from 2-styrylbiphenyl (2) most
notably by the increased nucleophilic character of the pyrenyl
group versus the phenyl group (in 2). Similarly, reactions of the
aryl ether derivatives 9 and 10 provide good yields of the conden-
sation products (entries 2 and 3). In the case of substrate 9, the
reaction with CF3SO3H gives 2-methoxyphenanthrene (16), while
compound 10 produces two regioisomers (17 and 18) from reac-
tion at the 5- and 8-positions of the benzodioxane ring. Nitro-func-
tionalized substrates give the polycyclic aromatic compounds in
good yields, with the preparation of 2-nitrophenanthrene (19)
and 2-nitrochrysene (20). Cyclization of 12 occurs regioselectively
at the 1-position of the naphthyl ring. Although the yields were
low, heterocyclic systems (21 and 22) were prepared from cycliza-
tion of a benzothiophene derivative (13) and the dibenzofuran
derivative (14). Most of the condensation reactions were done by
reacting a CHCl3 solution the substrate with CF3SO3H at 25 �C.
However, in some cases, the reaction conditions needed to be tai-
lored for particular substrates. For example, compound 12 gave
complex product mixtures when the reaction was done at temper-
atures warmer than 0 �C.

In order to obtain better yields for the conversions, we reasoned
that the 2-phenyl-1-propenyl system should lead to regioselective
protonation and more efficient cyclizations. Several 2-phenyl-1-
propenyl derivatives were prepared and reacted with superacid
(Eqs. 4,5,6). When compounds 23 and 24 were reacted with
CF3SO3H, the polycyclic aromatic hydrocarbons (26 and 28) are
formed in reasonably good yields. The conversion of compound
23 to 9-methylphenanthrene (26) is a marked improvement over
the analogous reaction of 2-styrylbiphenyl (2) to give phenan-
threne (3, Eq. 2). This improvement may be understood by consid-
ering the regioselectivity of protonation. Compounds 23 and 24 are
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protonated exclusively at the 1-carbon position of the olefinic
groups, leading to the stable 3� carbocations (i.e., 27). This leads
to efficient conversions to the phenanthrenes. In the case of com-
pound 24, however, the product mixture also contains a small
amount of 9-methyl-2-phenylphenanthrene (29; visible by NMR),
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1. PtCl2, 50 ºC, 24 hr
2. AuCl3, 50 ºC, 24 hr
3. AuCl, 50 ºC, 24 hr
4. CF3CO2H, 25 ºC, 24 hr
5. Sulfated zirconia

Products 35 and 36 Formed
Catalyst Systems:
1. PtCl2/AgOTf, 50 ºC, 24 hr
2. AuCl3/AgOTf, 50 ºC, 24 hr
3. Phosphotungstic acid, 50 ºC, 24 hr
4. Montmorillonite KSF, 50 ºC, 24 hr
5. Nafion SCA-13, 50 ºC, 24 hr

Product 16 Formed

1. CF3SO3H, 25 ºC, 24 hr
Catalyst System:

Reaction Products and Catalyst Systems

Figure 1. Reactions of olefin 9 with various acids.
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which can be removed from the 10-methyl-2-phenylphenanthrene
(28) by recrystallization. In a similar respect, reaction of compound
25 gives a high yield of the cyclization product 30; however, it is
formed as an inseparable pair of structural isomers (ca. 1:1 ratio).
Presumably, these isomeric products are formed by migration of
the methyl group in product 30 as a result of protonation in super-
acid. The same isomerization evidently occurs with compound 28
(Eq. 6).8 To verify that methyl migration can occur in these sys-
tems, a doubly 13C labeled derivative was also prepared and the
precursor alcohol was reacted in CF3SO3H (Eq. 8). 2-Bro-
momethylbiphenyl gave the Grignard reagent, which reacted with
doubly labeled acetophenone to provide alcohol 33. Upon reaction
with CF3SO3H, the expected 9-methylphenanthrene (34a,b) was
produced quantitatively. NMR analysis showed that the product
9-methylphenanthrene had undergone extensive 13C scrambling,
presumably through methyl migration. The acid-catalyzed migra-
tion of methyl-substituents on arenes is a well-known process,
for example, in the industrial-scale isomerization of xylene iso-
mers.7 In the present case, the isomerization may, however, lead
to undesirable product isomers of the polycyclic aromatic
compounds.

Although it was shown that compound 2 may produce phenan-
threne by flash vacuum pyrolysis at 200 �C over Nafion-H catalyst,
CF3SO3H is the only acid catalyst found to produce the polycyclic
aromatic compounds at modest temperatures in the condensed
phase. A series of solid acids, electrophilic metals, and other cata-
lysts were tested for their activities in the cyclization of compound
9 (Fig. 1). Several of the catalytic systems induced cyclization,
although none gave benzene elimination. Some of the electrophilic
metal catalysts, such as PtCl2, isomerized the olefin group in 9, but
did not give the cyclized products (35 and 36).

The cyclization of styryl-substituted biaryl systems is a new
general synthetic route to polycyclic aromatic systems. This super-
acid-promoted conversion in most cases is thought to involve
monocationic cationic intermediates. For example, in the conver-
sion of compound 9 to 2-methoxyphenanthrene (16), protonation
of the styryl group begins a series of reaction steps involving three
carbocationic species (37–39, Eq. 9). Benzene elimination requires
ipso-protonation of intermediate 35. Thus, very strong acids (or
high temperatures) are required to complete the condensation
reaction. Mechanistically, the overall conversion is similar to the
methoxy-vinyl cyclization strategy developed by the Harvey group,
although in the later case mild acids could be employed.8 In the
case of the nitro-substituted compounds (11 and 12), the reaction
may involve superelectrophilic, diprotonated species. Nitro-substi-
tuted arenes are known to be protonated in CF3SO3H at the nitro
group and they can participate in superelectrophilic reactions.9

This suggests either the dication 40 or the protosolvated species
41 as the initial intermediate. Both 40 and 41 are expected to pos-
sess enhanced electrophilic reactivities compared to related mon-
ocationic species (i.e., 7b). Moreover, protonation of the nitro
group should tend to disfavor the undesired intermediate 42 due
to electrostatic repulsive effects.10
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In summary, we have found that reactions of olefinic substrates
with superacid can give polycyclic aromatic products.11 Substi-
tuted derivatives may also be prepared. An addition–elimination
mechanism is proposed for this condensation reaction, including
a superacid-promoted benzene elimination. Most of the conver-
sions are thought to involve monocationic species; however, the
nitro-substituted systems may react via dicationic superelectro-
philes (with protonated nitro groups). The condensations were
found to be most successful when the olefin group tends to be
regioselectively protonated. Good conversions were also observed
with activated (nucleophilic) aryl groups, such pyrenyl and 4-
methoxyphenyl groups.
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1H), 7.85–7.93 (m, 5H), 8.00–8.02 (d, J = 7.8 Hz, 1H), 8.09–8.10 (d, J = 7.6 Hz,
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(d, J = 8.6 Hz, 1H), 8.76–8.78 (m, 1H). 13C NMR (CDCl3, 125 MHz) d, ppm: 20.1,
123.1, 124.8, 125.1, 125.9, 126.4, 126.6, 127.0, 127.4, 127.6,129.0, 130.3, 132.2,
132.4, 133.0, 139.2, 141.0. High resolution MS (EI), C21H16 calcd: 268.12520,
found: 268.12415.


